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Abstract
A branch of Complexity Theory called Information-Based Complexity Theory

(IBCT), produces an abundance of impressive results about the quest for approximate solu-
tions to mathematical problems. Why then do most numerical analysts turn a cold shoulder
to IBCT? Close analysis of two papers representative of IBCT's best efforts reveals a mix-
ture of nice new observations, misdirected examples and misleading theorems.

Some elements in the framework of IBCT, erected to support a rigorous yet flexible
theory, make it difficult to judge whether a model is off-target or reasonably realistic. For
instance, a sharp distinction is made between information and algorithms restricted to this
information. Yet the information itself usually comes from an algorithm and so the distinc-
tion clouds the issues and can lead to true but misleading inferences.

Another troublesome aspect of IBCT is a free parameter F, the class of admissible
problem instances, whose membership fee is completely ignored in ascertaining the cost of
solving the worst case in F. Sometimes this leads to unrealistic models.

We conclude that one's satisfaction with each result of IBCT must be inversely pro-
portional to what one knows about the problem. The surprising results known to us pertain
only to unnatural situations and IBCT's genuinely new insights might serve us better if
expressed in the conventional mode of error bounds and approximation theory.
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Some Basic Information on
Information-Based Complexity Theory

Beresford N. Parlett t

Abstract
Some critical comments on information based complexity theory (IBCT) are offered.

They may help to explain why most numerical analysts have turned a cold shoulder to this
particular brand of Complexity Theory.

The output of IBCT is abundant, impressive, and appears to address the same sort of
problem that interests numerical analysts; the quest for approximate rather than exact solu-
tions. However a careful examination of two papers reveals a 1fferent state of affairs. We
find a mixture of repackaged error bounds, nice new observations, misdirected examples
and misleading theorems.

Our conclusion is that, in these cases, the framework of IBCT, erected to permit a
rigorous theoretical development, makes it difficult to tell when the models are off target
and when they are reasonably realistic. The less one knows about a particular problem the
easier it is to be satisfied with the IBCT results. It seems that the genuinely new insights
may be expressed better in the conventional mode of approximation theory and error
bounds while the surprising theorems turn out to apply to unnatural situations.

IBCT is flexible and it embraces distorted models as easily as it does genuine ones.
There are several sources of trouble including
(i) a misleading distinction between information and algorithms , and

(ii) a free parameter, the class F, whose membership fee is completely ignored.
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1. Introduction and Summary
The incentive to write this essay came from discussions held during the workshop at

the Mathematical Sciences Research Institute (Berkeley) in January, 1986 under the title
'Problems relating computer science to numerical analysis'.

In 1980 J. Traub and H. Wozniakowski published a monograph entitled 'A General
Theory of Optimal Algorithms', which initiated a new line of research. The subject was
initially called analytic complexity theory but is now referred to as information-based com-
plexity theory (IBCT hereafter). The August 1987 issue of the Bulletin of the A.M.S. con-
tains a summary of recent results, [Pac&Wo,1987] so acceptance of this branch of com-
plexity theory has been swift.

One purpose of the general theory is to provide an attractive setting for the systematic
study of the sort of problems that have engaged numerical analysts for decades. One
among the programs of IBCT is to determine the minimal cost of computing an approxi-
mate solution (of given accuracy) over all algorithms that one could use which restrict
themselves to certain limited information about the data. It is also of interest to discover
any algorithms that achieve this minimal cost or, at least, come close to it. Pride of place
in IBCT is given to the information to which the algorithms are limited. By its choice of
problems IBCT is (potentially) a branch of complexity theory that is highly relevant to
numerical analysts. Whenever the minimal costs can be estimated they provide a yardstick
against which to measure actual algorithms. It seems to be an attractive program.

IBCT is careful to distinguish itself from the older specialty now called arithmetic
complexity which is concerned with discrete problems such as the minimal number of basic
arithmetic operations required to form the product of two nxn matrices. See, for example,
[Ra,1972], [Str,19691, [Sch&Str,1971] and [Wi,19701. Arithmetic complexity is a deep and
important field. Another way to model some aspects of scientific computing was intro-
duced in 1988 by L. Blum, M. Shub and S. Smale, [B1,Sh&Sm,1988]; Algebraic Complex-
ity allows computation over rings, in particular the real number field.

The purpose of this paper is to sound a warning about IBCT, not these other branches
of complexity. The next few paragraphs point out why our task is less than straightforward
and why our observations have more than local interest.

First, unlike some other disciplines, mathematics lacks a tradition of public criticism
and there is a chance that our criticisms will be construed (wrongly) as an attack on the
technical ability of the founders of IBCT. Second, any objections must focus on specific
work. Here we discuss two related papers which we believe to be typical: [Tr&Wo,84] and
[Ku,86]. They are examined in detail in Sections 4 and 5. IBCT covers .rany areas
besides the matrix computations considered here, but we concentrate on v" nat we know
best. Third, our task is complicated by the fact that both papers contain observations that
are new and of independent technical interest. Both are written in a professional manner
and the analysis is not weak. Our claim is that the results, most of them, are seriously
misleading.

Since the arguments in the papers are impeccable the flaw must be in the framework.
Yet the definitions are laid out plainly for all to see and seem to be appropriate- a puz-
zling situation.

One source of difficulty is the redefinition of common terms such as 'eigenvalue prob-
lem' (see Sect. 2(E)) or 'worst case' (see Sect. 2(C)) or 'information' (see Sect. 4.4) or
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'algorithm' (see Sect. 2(A) & 3.2 & 4.4 & 5.3). These slight twists to conventional mean-
ings are subtle enough to escape notice but entail significant consequences. The results
mislead because they are remembered and discussed in terms of ordinary word usage. Most
readers will not even be aware of the shifts in meaning, some of which are due to the
tempting but artificial distinction between information and algorithm.

Another feature of IBCT that can sometimes rob results of their relevance is the pres-
ence of a free parameter: the class F from which worst cases are to be drawn. The cost of
testing membership in F is ignored by IBCT and so the model loses validity whenever this
cost is not negligible.

Some of our criticisms require little knowledge of the subject matter. These are
presented in the next section. After that we get down to details, provide some background
material and then examine each paper in turn. In our summaries we try to be fair but we
encourage the interested reader to compare our effort with the original work.

A handful of reservations about IBCT have appeared in print. The reviewer of the ori-
ginal 1980 General Theory of Optimal Algorithms in the SIAM Review saw no blemish in
the models generated by IBCT, [Pac,1986]. In a review of the second monograph M.
Shub [Shu,1987] gives a couple of instances of unnatural measures of cost. In (Sm,1985]
S. Smale makes a penetrating observation that the sharp distinction between information
and algorithm may be too rigid to reflect the nature of the approximation problems that
IBCT investigates. In fact this sharp distinction is a cause of subtle changes in the use of
the word algorithm mentioned in an earlier paragraph. See Section 3.2 for details. In
[Ba,19871 I. Babushka calls on researchers in IBCT to make their models more realistic.
We concur but note that there are at least two ways in which a model may fail to be realis-
tic. On one hand all that may be needed is a relaxation of some assumptions; on the other
hand the model may be so flexible as to embrace pointless investigations as readily as per-
tinent ones.

We make no complaint that IBCT ignores the roundoff error that afflicts implementa-
tion on digital computers. First of all a good understanding of computation in exact arith-
metic is a prerequisite for tackling practical issues. Secondly we must acknowledge that a
large part of theoretical numerical analysis confines itself to the comforts of exact arith-
metic.

IBCT has already produced a large body of results, some of them surprising and con-
sequently of potential interest. Yet each surprising result known to us, in worst-case
analysis, holds only within a model sufficiently unnatural as to forfeit attention from
numerical analysts. This is a pity because IBCT certainly permits realistic models and there
is plenty to do; the investigation of average case complexity of approximately solved prob-
lems is in its infancy. It would take only a few illuminating results concerning some rea-
sonable models to restore faith in the program launched by the General Theory of Optimal
Algorithms. Even then we doubt that all the notation (see Section 4.2) is really necessary.
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2. High Level Criticisms
A) This is not Complexity Theory

Numerical Analysis and Complexity Theory are palpably different subjects. Complex-
ity Theory (CT hereafter) seeks to determine the intrinsic difficulty of certain tasks,
whereas much of theoretical Numerical Analysis (NA hereafter) has been concerned with
studying classes of algorithms, analyzing convergence and stability, developing error
bounds (either a priori or a posteriori), and detecting either optimal or desirable members
of a class according to various criteria. Clearly CT has more ambitious goals than does
NA.

One major theme of IBCT is to find the minimal cost of achieving a certain level of
approximation for the hardest case in a given problem class F using any algorithm that
confines itself to certain partial information about the case. One of the papers we examine
is concerned with the matrix eigenvalue problem and the other with the solution of large
systems of linear equations. See [Ku,1986] and [Tr&Wo,1984]. Now we can formulate
our first complaint, one that applies to the results in both papers.

The theorems say nothing about the intrinsic cost of computing an approximate
solution to either of the problems mentioned above because the specified infor-
mation is not naturally associated with the task but is acquired when a certain
class of numerical methods is employed.

The class is sometimes called the Krylov subspace methods; one is not given a

matrix A explicitly, but instead a few vectors b, Ab, A 2b, A 3b, ..., Aib, and one wishes
to approximate the solution of a system of linear equations Ax=b or some specified eigen-
pair of A. More details are given in Section 3.2 and 3.3. So the invitation to minimize
cost over all algorithms subject to the given information turns out, in these cases, to
amount to the quest for the best that can be achieved at each step of a Krylov subspace
method. This is exactly the sort of work that numerical analysts do.

We do not wish to belabor the obvious but our suggestion that, in these cases, IBCT
has the appearance of CT without the substance is important for the following reason. It
might be claimed that we interpret IBCT results as though they were results about Krylov
subspace methods (i.e. NA) when, in fact, they are CT results concerning Krylov informa-
tion. In other words, perhaps we are guilty of looking at the world through NA spectacles
and missing that subtle difference of emphasis characteristic of CT. This possibility needs
to be considered but the stubborn fact remains that restricting information to Krylov infor-
mation is not part of the linear equations problem nor of the eigenvalue problem.
B) Free Information in the Problem Class

The ingredient of IBCT that allows it to generate irrelevant results is the problem
class F [see para. 2 in (A)]. F did not appear in our brief description of the theory in the
third paragraph of Section 1 because it is not a logically essential ingredient but rather a
parameter within IBCT. Let us describe the role it plays. There is a task T to be accom-
plished, there is an information sequence N=(N1 ,N2,N3 .... ) coupled with a measure of cost
(N1 costs j units), and there is F. For each Nj the only algorithms admitted for con-
sideration are those that restrict themselves to use Nj and standard auxiliary computations.
For a worst-case complexity analysis the main technical goal is to determine the minimal
cost, over admissible algorithms, required to achieve T for the most difficult problem
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within F that is consistent with N. This minimal cost may be called C(F,N,T).

Suppose now that FicF 2 and that C(F 1,N,T)<C(F2,N,T). Such a result is of little
relevance to the achievement of T unless one can determine that a problem lies within F1

rather than F 2. To put the matter in other words we might say that knowledge of member-
ship in F is information and should have a cost attached to it. Whenever F is very large
(for example, the class of continuous functions or the class of invertible matrices) then it is
realistic to assign no cost to it. On the other hand there are examples (see Section 4.4)
where it may be as expensive to ascertain membership in F as to achieve T, given N, over
a larger class of problems. In such cases C(F,N,T) bounds one part of the expense while
ignoring the other. Let C(N,T) denote C(F,N,T) when F is as large as possible.

We may reformulate the minimax quantity C(N,T) with the aid of a useful piece of

notation. To each N, there is a set Vj of problems (matrices in our case) that are indistin-
guishable by Nj. The sets 'Ij, j = 1,2,...,n are nested and eventually reduce to a singlet.-
Associated with any approximation z is the set Rj(z) of indistinguishable residuals (e.g.
Rj(z) = b - A z, Aef 1j for the linear equations problem A x = b ). The goal is to find the
smallest natural numbt: k such that there is a z for which Rk(z) lies in the target ball (e.g.

B(O,e libiI), the ball in R' centered at the origin with radius e 1[bI). This is C(N,T).

This formulation reveals several things. First, the admissible algorithms cited in the
minimax formulation of C(N,T) are not really needed, what matters is the size of Rk(z)
for various z. Second, one reason why there is very little in the NA literature on the prob-
lem of finding the minimal k is that for most interesting tasks k = n, the sets Rk(z) are
just too big, and so the problem is not interesting.

One way to reduce the indistinguishable sets is to introduce a subclass F and to use

V. = V/j n F in place of Vj. This was discussed above. For approximation theory there is
no objection to the introduction of unknown quantities that might characterize F. How-
ever, as mentioned above, IBCT seems to use F as a tuning parameter designed to keep
k < n.

C) A Confusion of Worst Cases

An important feature of Krylov information (b, Ab, A 2 b .... ) [see para. 3 in (A)] is
the so-called starting vector b which is, of course, quite independent of the goal of com-
puting eigenvalues. There are two different factors that can increase the cost of using this
information to approximate eigenvalues of A. One is an intrinsic difficulty; some matrices
in the given class may have unfortunate eigenvalue distributions. The other is that b may
be poorly chosen. Instead of separating the effects of these factors the eigenvalue paper
combines them and so ends up analyzing Krylov information with a worst possible starting
vector even though satisfactory starting vectors are easy to obtain. The fact that b is
treated as prescribed data is quite difficult to spot. This situation is in stark contrast to the
linear equations problem where b is part of the problem of solving Ax=b.

The study of worst choices for b is not without interest. See [Sc,1979], for example.
Such studies are relevant to the inverse eigenvalue problem but not to the complexity of
approximating eigenvalues via Krylov subspaces.
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Section 5 discusses the issue in more detail but the conclusion is that the wrong plac-
ing of b twists the model away from its original target. It is only this distorted model that
permits the proof of the surprising results in [Ku,1986,Abstract].

D) Spurious Challenges
The optimality properties of various Krylov subspace methods are well known, see

[Sti,1958]. IBCT's claim to have something new to add is based on the suggestion that its
theory considers any algorithm (confined to Krylov information) including those which
give approximations z from outside the Krylov subspace. See the quotation in Section 4.1.
The trouble with this apparent novelty is that it is not possible to evaluate the residual
norm IIb-Azll for these external z because there is no known matrix A (only Krylov infor-
mation). So how can an algorithm that produces z verify whether or not it has achieved its
goal of making IIb-AzII<ejbjIb? Perhaps that is why no such new algorithm is actually
exhibited? IBCT's suggestion that it goes beyond the well known polynomial class of
algorithms is more apparent than real.
E) A New Eigenvalue Problem

The task of computing some or all the eigenvalues of a matrix is acknowledged to be
of practical importance. When only a few eigenvalues of a large order matrix are wanted,
one seeks either the smallest eigenvalues, or the largest, or all in a given region. Unfor-
tunately [Ku,1986] makes a subtle change in the problem. The redefined goal asks for any
approximate eigenpair (value A. and vector x) without reference to where in the spectrum
the approximate eigenvalue may lie. Of course a theorist is entitled to investigate any
problem he or she chooses. However we have yet to hear of any use for such output. Our
complaint is that no indication is given that the goal is an unusual one. Very few readers
would realize that the familiar relevant eigenvalue problem has been bypassed. Indeed we
missed the point ourselves until a friend pointed it out.

It is standard practice to use the size of the residual norm (llAx-xXj1) as the means by
which to decide whether a specified approximate eigenvalue is accurate enough. IBCT
twists things around and makes a small residual norm into the goal. It is the old philosoph-
ical error of mistaking the means for the end.
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3. Preliminaries
3.1 A Word on Matrix Computations

The subject begins with three basic tasks.

i) solve systems of linear algebraic equations; written as Ax = b with x, b column
vectors and A a matrix,

ii) compute eigenvalues and eigenvectors of A,

iii) solve least squares problems, i.e. minimize II b - Ax II over all x. The Euclidean
norm is used throughout this article.

There are very satisfactory programs for accomplishing these tasks when the matrices
are small. An nxn matrix is said to be small if a couple of n x n arrays can be comfort-
ably stored in the fast memory of the computer. These days a 50 x 50 matrix would be
considered small on most computer systems. The reader may consult [ Pa,1984 ] for more
information. The methods in use make explicit transformations on the given matrix. There
are one or two open problems concerning convergence of some methods but by and large
the small matrix problem is in satisfactory condition with respect to conventional one-
calculation-at-a-time (sequential) computers.

One reason for introducing this slice of history into the discussion is to bring out the
fact that computation with large order matrices (say, 5000 x 5000) is a somewhat different
game from computation with small ones. Sometimes the very problem itself changes. For
solving Ax = b, the goal does remain the same but often the product Av, for any vector v,
can be formed cheaply and so one seeks methods that exploit this feature and do not factor
A. For the eigenvalue problem, there are many applications where only a few eigenvalues
are wanted, perhaps 30 out of 5000, and it is desirable to avoid changing A at all. Thus
the task has changed; there is no desire to diagonalize A. The third standard task, the least
squares problem, remains the same and there is no preferred approach; sometimes the data
are transformed but with strenuous efforts to maintain sparsity, at others the original matrix
is not altered.

For all three problems it often happens that a sequence of similar cases must be
treated as parameters are changed. This leads to updating problem. This ends our histori-
cal digression.

3.2 A word on Information-based Complexity

We describe a simple version of IBCT that is used in the two papers to be examined.
It does not use the full panoply of concepts in the monograph or its sequel
[Tr,Wo& Wa, 1983].

There are a few essential ingredients that are best seen in a specific context.

1) a class F;

e. g. F = [B : B e RXn symmetric, positive definite)

2) a task:

e.g. given b * 0 in R', and e>0, find x in R' s.t. II Ax-b II <, II b II, A E F.
Here II • II is some given norm.
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3) information N = (NO, N1, .... );
e.g. Ni(A,b)= {b, Ab, ..., Ajb } for natural numbers j5n , A e F.

4) a measure of cost;
e.g. j units for Nj. In this model the forming of linear combinations of vectors is
free.

Items 2 and 3 do not make it clear that A is not known explicitly. There is more discus-
sion of this point in Section 4.3.

To use an algorithm, restricted to the information N, in order to solve a problem in F
will entail cost that may vary with the problem. The primary goal of worst-case IBCT is
to minimize, over all such algorithms, the maximum, over all problems in F, of that cost.
Determining the minimum, even roughly, is worth while even if an algorithm that achieves
the minimum is not known. There is an analogous average-case theory.

This certainly has an appeal.
Please note that, in our example, Item 3 puts this theory firmly within Numerical

Analysis. This is because the information in this example, and it is typical, is not part of
the task. The information Nj will only be available if a certain type of method is invoked.
Consequently the theory is not addressing the intrinsic cost, or difficulty, of solving linear
systems but is confined to seeking the number of needed steps within a chosen class of
methods. This is what numerical analysts do, and have done, from the beginning.

In the 1970's the word 'complexity' was reserved for the intrinsic difficulty of a task
and the word 'cost' was used in connection with a particular algorithm. For example, see
[Bo&Mu,1975j and [Wi,19801. However, it is now common to talk about the complexity
of an algorithm as a synonym for cost. This extension of the term complexity does no great
harm. What is misleading is that the notion of information appears to be independent of
any algorithm. This allows the theory to talk about the set of all algorithms that confine
themselves to the given information. As indicated in the previous paragraph this way of
talking may sometimes be a reformulation of the standard practice of optimizing over a
specified family of methods.

For j<n the information Nj(A,b) is partial; there are many matrices that are indistin-
guishable from A in the sense that each of them generates the same set of j+l vectors.
The basic technical concept in the theory, the matrix index k(4,A) of an algorithm (, is
the minimal cost using (D to guarantee achievement of the task for all matrices in F that
are indistinguishable from A . There is more discussion in Section 4.2 and Section 2(B).

For the eigenvalue problem the task is stated as: find x E C " and p - C such that
114x-xpll<E for all A in F that are indistinguishable from A. The defects in this
definition were mentioned in Part (E) of Section 2 above.

The theory seeks min k(c1,A) and other related quantities while 1 is restricted to

information N. This minimum is the complexity of the task.
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3.3 Krylov Subspaces

Here we sketch the conventional wisdom on this topic. These subspaces of R ' are
defined by

KJ = K'(A,b)=span(b, Ab, .... Ai-'b).

There is no loss in assuming that dim Kj=j. Information N1 permits computation of any
vek,,t i V KLAI , not just KJ, at no further cost provided that the coefficients Yi ,n

V= y r (Aib) are known.
i=0

On the practical side the dominant question for the experts has been how to obtain a
computationally satisfactory basis for K'. Round off error destroys the expected linear
independence of the computed vectors. Some researches maintain that it is mo. - efficient
to use a highly redundant spanning set rather than a basis. Others r-commend the addi-
tional expense of computing an orthonormal basis. In any case it is the computation of the
basis, or spanning set, along with multiplication of vectors by A that is the expensive part
of the computation. The model of cost used in IBCT theory reflects this quite well. It is the
number of 'steps' that matters. We think of a step as adding one more vector to the Krylov

sequence (b, Ab, A 2b, .... }.

One of the founders of Krylov space method, C. Lanczos [La,19521, proposed a useful
basis for K' with the property that the projection of symmetric A onto K' is a symmetric
tridiagonal jxj matrix Tj. Tridiagonal matrices are easy to handle. With a basis in hand
there are diverse tasks that can be accomplished. Here is a (partial) list.

i) Compute an approximation x) to A-lb such that P) E K' and its residual

b-AxP) is orthogonal to K'. It so happens that It b-Ax(') 11 may be computed
without forming P) so there is no need to compute unsatisfactory P). When

A E SPD (sym., pos. def. matrices) then P) coincides with the output of the
conjugate gradient algorithm.

ii) Compute the vector u(i) that minimizes II b-Av II over all v e Ki (not KJ'').

This is the MR (minimum residual) algorithm. The extra vector A'b is needed to
ascertain the coefficients in the expansion of u()).

iii) Compute some, or all, of the Rayleigh-Ritz approximations (0i, Yi', i = I, ... j
to eigenpairs of symmetric A. Here 0i E R and Ly , ...., yj) is an orthonormal
basis for K'. For each i, Ayi - yi6i is orthogonal to K'.

Krylov subspace methods are not really iterative. All the basic tasks mentioned in
Section 3.1 are sol -'d exactly (in exact arithmetic) in at most n steps. However the interest
in this approach is due to the fact that in many instances far fewer than n steps are required
to produce acceptable approximations. In other words to take n steps is the practical
equivalent of failure. However for each basic task there are data pairs (A. b) which do
require n steps even for loose tolerances such as e = 10-3. So research has focussed on
explanations of wh:, so often, the cost is much smaller. The gradual realization of the
efficacy of changing the Ax = b problem to an equivalent one via a technique called
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preconditioning has enhanced the use of Krylov subspace methods.
In a sense the ' convergence ' of all these methods is completely understood, in the

symmetric case, and is embodied in the error bounds published by S. Kaniel and improved
by C. C. Paige and Y. Saad. See [Ka,1966], [Sa,1980], and [Pa,1980] for the details. The
error depends on two things; the eigenvalue distribution of A and the components of the
starting vector b along the eigenvectors. Of course, all this analysis supposes a given
matrix A, not a set of indistinguishable matrices.

From this conventional viewpoint the thrust of these two complexity papers is to see
to what extent the standard algorithms (CG, MR, Lanczos) do not make best use of the
information on hand. Recall that Nj contains an extra vector not in X i. This is a reasonable
project and the results can be expressed within the usual framework. The term 'complexity,
theory' appears to a numerical analyst like window dressing.



- 10-

4. On the Optimal Solution of Large Linear Systems

These sections offer a description of and commentary on [Tr&Wo,1984].
4.1 Spurious Generality

Here is a quotation from the introduction:
'We contrast our approach with that which is typical in the approximate solution
of large linear systems. One constructs an algorithm 0 that generates a sequence
{xk} approximating the solution a = A-1 b; the calculation of xk requires k
matrix-vector multiplication and xk lies in the Krylov subspace spanned by
b, Ab, ... , A k b. The algorithm 4) is often chosen to guarantee good approxima-
tion properties of the sequence { xk). In some cases (D is defined to minimize
some measure of the error in a restrictive class of algorithms. For instance, let
this class be defined as the class of 'polynomial' algorithms; that is

a-xk = Wk(A)a, where Wk(O) = 1.

Here Wk is a polynomial of degree at most k.

<Some omitted sentences define the minimum residual and conjugate gradient
algorithms.>
It seems to us that this procedure is unnecessarily restrictive. It is not clear, a
priori, why an algorithm has to construct Xk of the form Ca-xk = Wk(A)a.
Indeed, we show that for orthogonally invariant classes of matrices the minimum
residual algorithm (MR) is within at most one matrix vector multiplication of the
lower bound without any restriction on the class of algorithms. However, if the
class is not orthogonally invariant, the optimality of MR may disappear.'

Our first point was made earlier. The information N does not come with the linear
equations problem. The brief answer to the quoted rhetorical question (why must an algo-
rithm construct Xk of the given form?) that serves to justify the whole paper is the follow-
ing. To any vector x NOT in the Krylov subspace Kk there is an admissible matrix A
such that the residual norm is as large as you please. This holds even when A is required
to be symmetric and positive definite. An admissible matrix A is one that is consistent
with the Krylov information. More on this below.

4.2 Definitions and Optimality
In this section we put down the definitions made in [Tr&Wo,1984]. Our comments

are reserved for the next section.
i) Let F be a subclass of the class GL(n,R) of nxn nonsingular real matrices.

ii) Let b E R' with 1f b 1I = (b,b) 11 2 = I be given.
For 0 • - < 1, find x r R~ such that
II b-Ax II <-, A - F,
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iii) Krylov information: Nj(A,b) = {b, Ab, ... ,AJb}, j=0,1.

iv) Measure of cost: Nj costs j units.

v) An algorithm (D= ( Oj } is a sequence of mappings

0j: Nj(F,R-) ---Rn

vi) The set of indistinguishable matrices for given Nj(A ,b):

V(Nj(A,b)) = { A: A r F: Nj(A, b) = Nj(A, b)}.

vii) The matrix index of an algorithm 4D:

k(4), A) = min ( j: max Ilb-AxjIl < E), Nj = Nj(A,b),
AE V(Nj)

where

xj = 4)j(Nj(A,b)).

If the set of j values is empty then k(4Dj(Nj(A,b) = 00.

viii) The class index of an algorithm 4):

k(4), F) = max k(4), B).
BeF

ix) The optimal matrix index:

k(A) = min k(4), A) over 4D restricted to N.

x) The optimal class index:

k(F) = max k(B).
BEF

xi) Strong optimality: 1) is strongly optimal iff

k(4),B)=k(A), for eachB e F.

xii) Optimality: 4) is optimal iff

k(4D, F) = k(F).

xiii) Almost strong optimality: 4D is almost strongly optimal iff

k(4),B) < k(B) + c, for every B c F,

for some small integer c.

Remark 1. Since Aib = A (A'-' b) it follows that Krylov information Nj(A,b)
requires j applications of the operator A. That is why the cost is given as j units. In
practice one uses better bases for the Krylov subspace K1 than is provided by
Nj(A,b) but for theoretical purposes this modification may be ignored.
Remark 2. It can happen that k(A) ,v k(F). For this reason it is of interest to find
algorithms with small matrix index.
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Remark 3. For simplicity the dependence of all concepts on n, N), b, and e is
suppressed. The idea is to compute k(A) and k(F) for interesting classes F and to
find strongly optimal or optimal algorithms if possible.

4.3 Discussion of the basic concepts

In Section 2 we pointed out how misleading it can be to compute complexity for res-
tricted classes F that are difficult to discern in practice. Here we wish to point out that F
is introduced into the basic definitions, such as V in (vi), and there is no need for it.

To add to any confusion the basic definitions do not make clear the role of A. In the
context of numerical analysis there is a particular matrix A on hand and this permits one to
test the residual r = b - Av for any vector v. However in the context of IBCT that is not
quite the case. In this game we consider a specific A but it is not available explicitly. That
odd situation certainly warrants some discussion and it faithfully reflects the state of affairs
at a typical step in a Krylov subspace method. The matrix is hidden inside a subprogram
and the user has only a basis for the Krylov subspace corresponding to Krylov information

Ns(A,b) = (b, Ab,...,Ajb}. Associated with Nj(A,b) is

V(Nj(A,b)) = { A: Nj(A, b) = Nj(A, b)},

the set of matrices indistinguishable from A by Nj(A,b). Contrast V' with V in Section 4.2
(vi).

With ' defined above the natural definition of the matrix index of an algorithm (D is

k((t, A) = min ( j: _max IIb-Axsll • e), Nj = Nj(A,b),
A( A V (Ni)

where

xj = 4Dj(Nj(A,b)).

If the set of j values is empty then k((D,A) = oo. Please note that in contrast to (vii) in

Section 4.2 there are no hidden parameters in k. It is the first step in the process at which
the task is accomplished by c1 for all matrices indistinguishable from A by N, through Nj.
Then the optimal index is

k(A) = min k((I, A)

(D
over all (D such that •D uses only Nj(A ,b) and standard arithmetic operations.

There is no logical need for F. However given a class F one may define

k/(c1,F) = max k/(0, B); k(F) = min k (0,F).
BEF (D

Why did IBCT not follow this simple approach? Why does IBCT use V = VC(" F to
define the matrix index k(D, A) and thus suppress the role of F? The reason, we suspect,
is that with these natural definitions the 'polynomial' algorithms, deemed to be restrictive
in the introduction to [Tr&Wo,1984] are mandatory and consequently IBCT has nothing
new to offer. Here is the key observation.
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THEOREM:
Assume A = A'e Rnxn. Let Ki = span(b,Ab,...,AJ-1b) have dimension j (<n). To each

v 4 KJ there exists Are V^(Nj(A,b)) such that lib - AvIl > 1.

Sketch of proof.

1. Should b be orthogonal to some eigenvectors of A it is always possible to choose an
A e V(Nj(A ,b)) such that b is not orthogonal to any of A's eigenvectors. If necessary
replace A by A.

2. There is a distinguished orthonormal basis for Ki that can be extended to a basis for
R n and in which A is represented by the matrix

where T = T t e RJXJ, u is entry (j+l,j) and (j,j+l), o = 83 * 0. Moreover
T and f3 are determine by Nj(A,b).

3. In this distinguished basis b is represented by e1 = (1,0,0,...,0)'. Let v be represented
by f Gg where f e Ri, g c Rn-. By hypothesis g * 0, since v KJ, and

II b - ,[v II = II el-f-ej 0 g(1) 112 + lie, 13f(j) + Ugl 2,

where U is the (2,2) block in the representation of A.

4. To each U c R(n-j)x(n-j) there is an A[ e V^(Nj(A,b)) and thus, for any g # 0, there
exists U such that

II el 3 f(j) + &Ug 112 >1.

In particular it is possible to select U to be symmetric, positive definite.

Here ends the sketch of the proof.

Symmetry is not needed in the result given above. If A is not symmetric there is still
a distinguished orthonormal basis for KJ(A,b) and R' such that b is represented by e1 ,
and A is represented by

['J]
Now H, a - • 0, and col 1 of J are determined by Nj(A,b). Moreover Je1 # 0 and for
A indistinguishable from A we have

II b -,,v 112 = 11 el - Hf - J g 112 + 11 el0 1 f(j) + L g 112.

This can be made as large as desired. In the language of IBCT k (D,A) = oCO for any D
such that 4'(Nj(A,b)) takes values outside Kj(A,b).
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Only two choices were left. Either turn away to unsolved problems or cut down the
number of indistinguishable matrices by using

V= f'nF

instead of V/.

Here is the quandary for IBCT. If F is chosen too small the model loses realism. If F
is allowed to be large then the standard 'polynomial' regime is optimal.

4.4 Discussion of Results

The main result of the paper concerns the minimal residual algorithm MR: this poly-
nomial algorithm's output for the information Nj = {b, Ab, ... , A-'b} is the vector in the

Krylov subspace K1 = span(b, Ab, ... ,A-lb) that minimizes the residual norm, so MR is

optimal in Kj. Given N1 MR needs k(MR,A) steps to achieve an e- approximation in the
worst case. However IBCT says

'Theorem 3.1
If F is orthogonally invariant then

k(MR, A) >_ k(A) 2! k(MR, A)-1, for anyArF.

Furthermore both the upper and lower bounds can be achieved.'

Recall that k(A) is the minimal number of steps over all admissible algorithms.
The fact that MR is NOT always strongly optimal for the given information appears

to give substance to the theory. It will astonish the numerical analyst, so let us look at the
example that purports to show that MR is not always optimal for the given information;
Example 3.2 in the paper. This class is

FP = {A: A = I-B, B = Bt , IIBII p <1}.

When ep and n are specially related so that

q(E[) = In(((1+(1- 
2)1/2)/,e)

ln(((I +(l-p 2)"/2 )/p) I

then MR is just beaten by another polynomial algorithm, called the Chebyshev algorithm,
because

k(Cheb,A) = q(e), k(MR, A) = q(e) + 1.

A word of explanation is in order. Recall that Aib e Nj(A,b) but Aib ý KL. The
MR algorithm needs AJb to compute the coefficients Yi in

MR(Nj(A,b)) = , -i (A'b).
i=0

This always beats the Cheb output from KJ. However Cheb can use the well-known
three-term recurrence, based on p, to obtain its equi-oscillation approximation from Ki",
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not just Ki. With the right relation between E, p, and n one has

II b - A MR(Nq ()) II > II b - A Cheb(Nq ()) II > II b - A MR(Nq(e)+l) II-

Is it fair to compare them? The theory claims to compare algorithms restricted solely
to information Nj. So how could the Cheb algorithm obtain the crucial parameter p? The
answer is that p is found in the definition of the problem class Fp! In other words,
knowledge that Cheb can use is passed along through the problem class, not the informa-
tion.

The important point we wish to make is not just that comparisons may not be fair but
that the results of IBCT tell us as much about the idiosyncrasies of its framework as they
do about the difficulty of various approximation problems. With a realistic class such as
SPD (sym. pos. def.) MR is optimal (strongly) as it was designed to be, and as is well-
known.

In more recent work [Wo,1985,Tr&Wo,19881 the flaw mentioned above appears to be
corrected and the parameter p is put into the information explicitly. Again Cheb wins by I
because it uses p while MR does not. However this new clarity comes at the expense of
realism; The Krylov information is scrupulously priced while p comes free. Yet member-
ship in T,. may be more difficult to ascertain than the approximate solution.

Although the IBCT paper does not mention the possibility Krylov information may be
used to obtain lower bounds on p that get increasingly accurate as the dimension of the
Krylov subspace increases. Algorithms that exploit knowledge of the spectrum will have
good average behavior but there is little room for improvement in the worst case.

The simple facts are well known: Chebyshev techniques are powerful and users are
willing to do considerable preliminary work to estimate parameters such as p. It is not
clear, and depends strongly on the data, when it is preferable to use a weaker method such
as MR that does not need extra parameters. The result that MR is only almost strongly
optimal is a striking example of obfuscation. The framework of IBCT permits unnatural
comparison of algorithms.

Embracing the Conjugate Gradient Algorithm.

In Section 4 of their paper the authors generalize the framework to cover other known
methods such as the conjugate gradient algorithm. All that is necessary is to introduce a
parameter p into the basic task. Now an E-approximation to A-lb is redefined as any
x E R " that satisfies

II AP(x-A-lb) II < E II AP-lb II.
The cases p=O, 1/2, 1 are the most important, and when p is not an integer it is appropriate
to restrict attention to the symmetric, positive definite subset SPD of Rnxn, When p=l
we recover MR. To generalize MR to p=O it is necessary to use the normal equations of a
given system. The new feature, slipped in without mention, is that with p < 1 the right
hand side of the definition is NOT DIRECTLY COMPUTABLE. So how does an algo-
rithm know when to terminate? Please note that Approximation Theory can present results
that are not computable without a blush. Approximation Theory merely exhibits
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relationships. What is the virtue of attaining the desired accuracy if it cannot be detected?
The fact that the Conjugate Gradient algorithm (p = 1/2) minimizes IIb-AxIIA at each step
is well known, see [Da,1967]. However, in practice, the algorithm is usually terminated
when IIb-AxII<eIIbII because the desirable A norm is not available, see [Go&Va,1984].

Section 5 of [Tr&Wo,1984] considers open problems. In particular the authors want to
go beyond Krylov information if only for the sake of settling their conjecture that Krylov
information is optimal in the class of information operators of the form

N,(A,b) = {b, Azo, .... Azj), where zi is determined from Ni_ 1.

4.5 An Interesting Result

Recall that
Nj(A, b) = (b, Ab .... Ab
K'1 = span (b, Ab .... Ab}
V(Nj(A, b)) = { A: Nj(A, b)=Nj(A, b)).

Theorem [Tr&Wo,1984] (reformulated by us)

If y e R' yields an E residual norm, II b - Ay II < e Itbil, for all A- E V(NJ(A, b))
then so does its orthogonal projection z onto Ki".

We offer a simplified version of the argument in [Tr&Wo,1984].

Proof: There are 5 steps.

i) Either y e K'i', and there is nothing more to prove or y=z+w, with
z r Kj+ , and O~w orthogonal to Kj+.

ii) For the vector w defined in i) there is a unique symmetric orthogonal matrix
H = H(w), called the reflector that reverses w. In particular

a) Hx = x, for x orthogonal to w, b) Hw = -w.
Define an auxiliary matrix A by

iii) A = HAH e V(Nj(A,b)) since, by use of a),

A b=HA'Hb = HAib = Aib, i = ... j.
Note that

Ay-b = HAHy-b

= HA(z-w)-b, using (i) and (ii)(b).

= H(Az-b-Aw), using Hb=b.

This shows the crucial relationship

iv) lIAy-bl[ = tlAz-b-Awll, since H preserves norms.

Hence
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v) IIAz-bll<2 IlAz -b-Awll+IlAz -b +Awll}, by triangle inequality,
2

I{(llAy-bll+llAy-bll), by (iv), and (i),2

<E Ilbll, by hypothesis.

Recall that z is y's projection onto Kj+'. Hence Az = Az for all Ai E f/(Nj(A, b))
and so

Ilaz-bil = IIAz-bll

E_ Ilbll, by (v). QED

This theorem explains why MR cannot lag more than one step behind any algorithm
that produces an E residual norm for all matrices indistinguishable from A. For, by
definition, MR produces from N+i+I(A, b) (note the increased subscript) the unique vector

in Ki+1 that gives the smallest residual and so is at least as good as the vectors y and z
defined in the proof above. But y could be the output of a rival algorithm.

Our formulation of the lemma omits any mention of the class F. Now it is clear why
the hypothesis that F should be orthogonally invariant appears in most of the theorems.

Recall that V(Nj(A, b)) is 'too big'. To cut down the number of 'indistinguishable'

matrices the theory uses V(Th F = V. To make use of the theorem it is necessary to have
HAH r F and this will be so provided that F is orthogonally invariant.

4.5 Summary
The hidden defect in the framework for discussing the MR algorithm is the far reach-

ing feature that allows the family F to convey what most people would call free informa-
tion behind the back of the information operator N.

More disturbing than the previous defect is that we cannot see how any algorithm
other than the well studied polynomial ones could know when it had achieved an E-

approximation if it is restricted to the given information. This gives rise to a feeling that
[Tr&Wo,19841 managed to create an artificial problem where no real puzzle exists. The
quoted theorems (3.1 and 4.2) reflect only the propensity of their General Theory of
Optimal Algorithms for creating such situations.
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5. Optimal Solution of Large Eigenpair Problems
This section offers a description of and commentary on [Ku,19861. The paper demon-

strates cleverness and clean exposition but nevertheless suffers from design flaws; it
equates different versions of a given algorithm and it redefines a standard task.

From the abstract:

'The problem of approximation of an eigenpair of a large nxn matrix A is con-
_idered. We study algorithms which approximate an eigenpair of A using the
partial information on A given by b, Ab, A 2 b, ... , AMb, j <. n, i.e. by Krylov
subspaces. A new algorithm called the generalized minimal residual algorithm
(GMR) is analyzed. Its optimality for some classes of matrices is proved. We
compare the GMR algorithm with the widely used Lanczos algorithm for sym-
metric matrices. The GMR and Lanczos algorithms cost essentially the same per
step and they have the same stability characteristics. Since the GMR algorithm
never requires more steps than the Lanczos algorithm, and sometimes uses sub-
stantially fewer steps, the GMR algorithm seems preferable.
.... The Fortran subroutine is also available via .... '

This last phrase shows that the subject matter is firmly within the field of numerical
analysis. Implementation issues concerning GMR are described in [Ku,1985].

5.1 A Subtle Change of Goal

Here are the first five lines.

'Suppose we wish to find an approximation to an eigenpair of a very large matrix
A. That is, we wish to compute (x, p), where x is an nxl normalized vec'or,
ilxll=l , and p is a complex number s. t.

IIAx-xpli < e (1. 1)

for a given positive e. Here II . II denotes the 2-norm.'

It is all too easy to assent to this statement of the problem and pass on to the rest of
the article. However it is NOT the normal eigenvalue problem. We are not aware of any
demand at all for the accomplishment of this particular task. The users of eigenvalue pro-
grams (engineers, theoretical chemists, theoretical physicists) want eigenvalues in specified
parts of the spectrum; occasionally they want the whole spectrum. The main concern of
this article is with symmetric matrices; and because their eigenvalues are real the usual
demands are for the leftmost p eigenvalues (for some p5n ) or the rightmost p eigenvalues
or for all eigenvalues in a given interval. Eigenvectors may or may not be wanted. There is
nothing inherently wrong with restricting attention to the rather special case p=l and a
few articles (not cited by Kuczynski) have been devoted to it. See [O'L,Ste&Va,1979] and
[Pa,Si&Str,1982] for the details.

To support our description of user's demands we refer to three publications from
different fields, [Cu&Wi,l 985,Introduction], [Je, 1977,Ch.7], [Sh, 1977,Sect.6].

The consequences of leaving out a vital aspect of the usual task are most serious pre-
cisely when one seeks optimal performance.

One reason why it is so easy to overlook the omission in the problem statement is
that, for symmetric matrices, almost everyone does use the residual norm II Ax-xp II to
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judge the accuracy of an approximate eigenpair (x, p). However it is not very interesting
to minimize the residual norm if that might yield a p in the unwanted part of the spectrum.
Now a pure mathematician is free to define his goal at will. What is regrettable is that no
hint is given to the reader that the goal is not standard.

We say more about the E appearing in (1.1) in Section 5.5.
We mention one other fact which may be news to readers who are not much con-

cerned with eigenvalue problems. It suggests why the direction taken by Kuczynski has not
appeared in the literature before. If we are given a symmetric matrix A and seek a single
eigenvalue (with or without its eigenspace) then the wanted eigenvalue is almost certain to
be either the leftmost or the rightmost one. Recall that the Rayleigh quotient of a column
vector x * 0 in R" is the number xtAx/x'x. The extreme eigenvalues of A are the

extreme values of the Rayleigh quotient over all possible vectors x in R '. It happens that,
for the given Krylov information Nj, the Lanczos algorithm is optimal for this task in the
strong sense that it yields the leftmost and rightmost values of the Rayleigh quotient over
all vectors in the 'available' space K1 . The last vector AJb in Nj is needed to ascertain
the extreme values in K-. Thus the problem is settled. It is a pity that this well known fact
was not mentioned.

5.2 Choosing a Bad Starting Vector
The particular aspect of Information-based Complexity Theory adopted in the paper

under review is called worst-case complexity. It seeks bounds on the cost of computing C-
approximations over all matrices in certain classes F and over ALL starting directions b.
Theorems 3.1, 3.2, 4.1, 5.1 (there is no theorem 1.1 or 2.1) in [Ku,19861 are examples. In
particular the theory must cover what can happen with the worst possible starting vector.
Theorem 3.1 is quoted in full in Section 5.4.

There is nothing wrong with studying the worst case. Indeed it has already been done.
[Sc,1979] is a paper with the clear title ' How to make the Lanczos algorithm converge
slowly'. The author gives formulae for a starting vector that prevents any Rayleigh Ritz
approximation from converging until the final step! Scott's paper appeared in Mathematics
of Computation, the principal outlet for Numerical Analysis of the American Mathematical
Society, but it is not referenced in [Ku,1986]. The fact that SOME Krylov subspaces can
be very badly aligned with A 's eigenvectors does prevent worst-case analysis from shed-
ding much light on how Krylov subspaces approach certain eigenvectors in the usual case
of a random starting vector. That study, of course, comes under average-case analysis and
is ripe for attention.

Please note that this comment is quite independent of comparisons of GMR and Lanc-
zos. The points is this. The starting vector b is a free parameter in the eigenvalue prob-
lem (in contrast to the linear equations problem Ax=b). It is not given and may be chosen
to improve performance. In the absence of extra information it is the almost universal
habit to pick b with the aid of a random number generator. Recent theoretical work on
Lanczos has been concerned to explain why this choice is so powerful. See [Sa,1980] and
[Pa,1980]. Note that two quite different situations have been pushed together under the
label 'worst case'. It is quite normal to consider the most difficult matrices A because they
are part of the problem. On the other hand a bad b is a self-inflicted handicap rather than
a genuine difficulty. It is the confounding of these cases that is unfortunate, not their
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study.

Returning to the eigenvalue problem, we can rephrase our complaint as follows.
Kuczynski's focus, perhaps unwittingly, is on Krylov-subspaces-with-worst-possible-
starting-vectors. What a pity that this was not emphasized! The numerical examples
given in the paper are not without interest. The starting vector there, though not perhaps
worst possible, is very bad. Both methods, GMR and Lanczos converge very slowly. The
chosen matrices are extensions of the one used by Scott to illustrate how bad Rayleigh Ritz
approximations can be. See [Pa,1980,p.2181.

We ran these examples with our local Lanczos program. It uses a random starting vec-
tor, and convergence was quite satisfactory. The results are given in Section 5.5.

There is a different context, in which the focus on worst starting values is much more
relevant. The GMR algorithm presented by Kuczynski is a generalization of the MR
(minimum residual) algorithm used to compute approximations to A-'b. There one seeks
vectors x in R' s.t. II Ax-b II < e II b II . A well chosen subspace may be used to gen-
erate approximate solutions at low cost. It is advisable to ensure that the right hand side is
in the chosen subspace and this consideration leads one to choose the subspace Ki . In this
context b is part of the data (A, b) and is not at our disposal. The study of bad b's is
relevant to a study of the complexity of Krylov space methods for linear equations. How-
ever it has been appreciated from the beginning that for reasonable e and unfortunate b
then n steps will be required unless A is close to the identity matrix. See [Ka,1966,Thr.4.3]
and [Me,1963].

To burden the Lanczos algorithm (or GMR) with unnecessarily bad starting vectors
for the eigenvalue problem is like studying the performance of Olympic athletes only when
they suffer from some rare affliction like poison ivy.
5.3 Redefining the Lanczos Algorithm

The new algorithm GMR is contrasted with the well known Lanczos algorithm. Here
is Kuczynski's definition of the Lanczos algorithm, from p.142. The subspace Aj is our

Krylov subspace Ki.

'Perform the following steps.

1. Find an orthonormal basis qj, q2, ... qj of the subspace Aj; Let
Qj = (qj, ... ,qj) be the nxj matrix.

2. Form the jxj matrix Hj = QjtAQj; compute eigenpairs of Hj;

Hjgi = higi. (gi.gm) = 3ira. i, m, = 1, ... , j.

3. Compute the Ritz vectors zi = Qjgi and the residual rjL = min IlAzi-Oizi I for

1 i < j.

4. Define Zi = ((zi. O), i = 1,2 .... j: II Azi -zi i II = rjL}

The jth step of the L algorithm is defined by

(DjL(Nj(A,b))=(xk Pk),

where (xk. p*) is an arbitrary element from Zi.'
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The trouble is that steps 3 and 4 have been changed from the usual ones to conform
with the idiosyncratic goal discussed in Section 5.1. However, no mention of this fact is
made.

Here is the conventional description wherein it is supposed that p eigenvalues are to
be approximated. It is from [Pa,1980,p.214]

2. ' Form the jxj matrix Hj= QjAQj; compute the p(<j) eigenpairs of Hj that
are of interest, say

Hj gi =gi O, i = 1 ...... p

The Oi are Ritz values, e, < e2 ...... < 6j . Equality is not possible.

3. If desired, compute the p Ritz vectors zi = Qjgi, i = 1, ... p. The full set
{(Oi, zi), i=1, ..., j} is the best set of j approximations to eigenpairs of A that
can be derived from Ai alone.

4. Residual error bounds.
Form the p residual vectors ri = Azi-ziOi. Each interval [Oi- II ri II, Oi+ II ri II]
contains an eigenvalue of A. If some intervals overlap then a bit more work is
'-equired to guarantee approximations to p eigenvalues. See [Pa,1980,Sec.1 1-5].

5. If satisfied then stop. '
In the context of Kuczynski's investigations his modification is entirely reasonable;

i.e. he selects at each step one Ritz pair with a minimal residual norm. However, it is most
misleading to those not familiar with the Lanczos algorithm to suggest that its purpose is
simply to produce this Ritz pair. In fact, as indicated above, the Lanczos algorithm pro-
duces an approximation, albeit crude, to the whole spectrum, namely el, ... , Oj and the
user is free to select from this set to suit the specific goal. Thus to approximate the right-
most eigenvalue, one concentrates on Oj and continues until its error bound II ri II is satis-
factory. In practice more refined error bounds can be made but that is not germane here,
see [Pa&No,1985].

It would have been preferable to state the Lanczos algorithm conventionally and then
specify the modifications appropriate for the purpose in hand. This action would make
clear that the Lanczos algorithm is not trying to minimize one residual norm. That is why
it is inferior to GMR for that purpose.

It is worth pointing out here that in the model of arithmetic used in these studies the
cost of all the Rayleigh-Ritz approximations and of finding the minimal residual norm over
the subspace K' is taken as nil. It might occur to the reader that in this context it would
cost no more per step to compute all the Rayleigh-Ritz approximations and use whatever
approximations one desires. The setting up of GMR and Lanczos as competing algorithms
is artificial. Moreover, in practice, it is much more expensive to compute the minimal resi-
dual than to compute the Rayleigh-Ritz residuals. Kuczynski has devoted a whole report to
the task.
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5.4 Theoretical Results

From p. 138
'We are ready to formulate the main theory of the paper.
Theorem 3.1
If F is unitarily (orthogonally) invariant, then the GMR is almost strongly
optimal in F, i.e., k(Og'mr, A, b) = min k(c?, A, b)+a, for any (A,b) E FxS,,,

where a c {0, 1, 2}.'

Here k(4D, A, b) is the minimal number of steps j required to guarantee an C-residual
with algorithm (D over all matrices q that are indistinguishable from A with the given
information N=Nj=[b, Ab, ..., Ajb]. The algorithm (D returns a pair p, x whose residual

norm 11 Xx-xp 11 is to be compared with E.

Recall that with information Nj, the GMR algoritnm, by definition, picks out a unit
vector xe K) and a pe C that produce the minimal residual norm.

How could any other algorithm possibly do better? Well, there might be special cir-
cumstances in which one could deduce a suitable additional component of that last vector
Ajb that is not used by GMR in forming x, although Ajb is used in calculating the
coefficients of GMR's approximation from Ky. The proof studies this possibility and con-
cludes that GMR would make up any discrepancy in at most 2 more steps.

The argument is very nice. In many important cases, when A is Hermitian for exam-
ple, then the constant a in Theorem 3.1 is actually 0.

There are other clever results. Theorem 4.2 shows that for symmetric matrices the
residual norm of GMR must be strictly decreasing at least at every other step. Theorem 5.1
yields a beautiful but esoteric fact about Krylov subspaces generated 5y Hermitian A. For
the worst starting vector there is a unit vector v in Ki such that

.I l < jlAv-vpjj <- "IA__."_
2j j

for j<n.
As indicated above these nice results from approximation theory do not add up to a

case for replacing Rayleigh-Ritz with some rival algorithm.

5.5 Numerical Examples
All the numerical results reported in [Ku,1986] concern symmetric tridiagonal

matrices with starting vector el ( the first column of the identity matrix I). This starting
vector ensures that the Lanczos algorithm reproduces the original matrix. At this point we
should recall that the original goal of the Lanczos algorithm was to reduce a symmetric
matrix to tridiagonal form. So the numerical results to be seen below do not relate to the
Lanczos recurrence itself but merely indicate alternative rules for stopping. With the goal
of tridiagonalization the algorithm always stopped at step n. Later it was realized that
excellent approximations to a few eigenvectors were usually obtained early in the process.
There is no single stopping criterion for current Lanczos algorithms; termination depends
on what the user wants, see [Cu&Wi,1985], [Pa,19801 and [Go&Va,1984].
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Kuczynski provides the Lanczos algorithm with a stopping criterion to suit his pur-
poses but his algorithm GMR could have been called (with more justice) the Lanczos algo-
rithm with a new stopping criterion. It uses the minimum residual in the whole Krylov sub-
space instead of the usual (cheap) Rayleigh-Ritz approximations. So the numerical results
simply indicate the effect of these different termination criteria.

The first batch of results concern tridiagonals with nonzero elements chosen at random
from [-1/3, 1/3]. The most striking feature is that the GMR residual and the smallest
Rayleigh-Ritz residual slip below the given e at the same step in the vast majority of cases,

particularly for e < 10-3. In Table 8.1, with e = 10-6, the step was the same in 18 out of
20 cases. In the other two the Lanczos algorithm (i.e. the minimal R-R norm) took 1 more
step (17 as against 16).

Some weight is given to the fact that the smallest R-R residual norm is rarely mono-
tone decreasing from one step to another whereas GMR does enjoy this property. However
if the approximate eigenvalue associated with the minimum residual happens to change
position in the spectrum from step to step then this monotonicity of GMR is not associated
with the convergence to a specific eigenvalue of the original matrix. No indication is given
in the results of how the approximate eigenvalue implicitly chosen by GMR jumps around
the spectrum. In practice the interesting thing to know is how many Ritz values have 'con-
verged', and to what accuracy, when the algorithm is terminated. Unfortunately this infor-
mation is excluded from the GMR viewpoint and is not reported.

The next results, Examples 8.1 and 8.2 in [Ku,1986], exhibit the dramatic 'failure' of
the Lanczos algorithm. On a tridiagonal matrix of order 201 and norm near 1 the minimal
R-R residual remained at its initial value 0.035 for all steps except the last (at which it
must be 0). In contrast the GMR residual declined slowly from the initial 0.035 to 0.0039
at step 200. If e = 0.034 then GMR takes 2 steps while Lanczos takes 201! However with

_ 10-3 both algorithms need 201 steps. We repeat once again that GMR will not know
which eigenvalue it has approximated.

Unfortunately no attempt is made to put this example in context. It illustrates the
phenomenon explored in some detail in [Sc, 1979], namely that for every symmetric matrix
with distinct eigenvalues there is a set (with positive Lebesgue measure on the sphere) of
starting vectors such that no Rayleigh-Ritz approximation is any good until the last step.
We must repeat that the Lanczos algorithm is not obliged to use a poor initial vector. We
ran our Lanczos code on this matrix. Our code starts with a normalized version of Ar,
where A is the given matrix (or operator) and r's elements are chosen at random from a
uniform random distribution. The reason for starting with Ar is compelling when sym-
metric A has an unwanted null space. The results are given in the Table 1.

The accepted eigenvalues (104 of them at step 190) agreed with those computed by
EISPACK to all of the 15 decimals printed out. The efficiency is not at all bad considering
that this is a difficult eigenvalue distribution for Krylov space methods.

Example 8.2, a tridiagonal of order 501 with null diagonal and monotonely increasing
off diagonal elements, caused the minimal R-R residual norm to increase from 0.001 ini-
tially to 0.011 at steps 499 and 500. In contrast GMR residual norms declined to 0.00036
at steps 499 and 500. Thus with e = .00099 GMR terminates at step 2 whereas Lanczos
terminates at step 501! However with e _< 10-4 both take 501 steps.
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As with Example 8.1 el is a bad starting vector yielding a poor Krylov subspace. We
ran our Lanczos program and found the results given Table 2.

We quote the final paragraph of the article.
'From all the tests we have performed we conclude that the GMR algorithm is
essentially superior to the Lanczos Algorithm on matrices with constant or
increasing codiagonal elements. For random matrices or matrices with decreasing
codiagonal elements, both algorithms produce nearly the same residuals.'
The revealing word here is 'codiagonal'. The author has worked exclusively with tri-

diagonal matrices and has forgotten that the goal of the Lanczos recurrence is to produce a
tridiagonal matrix! Given such a matrix one has no need of either Lanczos or GMR. As
our results indicate a random starting vector permits the Lanczos algorithm to perform
satisfactorily even on such craftily designed matrices. The quotation reveals just how far a
mathematical theory can stray from relevance.

5.6 Summary

Here is an attempt to formulate the numerical analyst's version of Complexity Theory
for Krylov subspaces and eigenvalues.

For each symmetric nxn matrix there are initial vectors that yield an eigenvalue
in one step, and initial vectors that yield an eigenvalue only at the nth step. The
nontrivial result contained in the Kaniel-Paige-Saad error bounds (See
[Pa,1980,Chap.12].) is that with most starting vectors the extreme eigenvalues
can be formed in a modest number of steps that depends on the distribution of
the spectrum and is nearly independent of n.

In brief our criticism of [Ku,1986] is as follows.
Section 1 exposes a serious flaw in the model, namely the goal.
Section 2 exposes a subtle way in which features of a method are pushed into the problem
statement; the starting vector.
Section 3 shows how standard terms can be redefined; the Lanczos algorithm.
Section 4 contains some nice results on the approximating power of Krylov subspaces.
Section 5 shows how very misleading numerical results can be in the absence of proper
interpretation.
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Table 1: Convergence of Ritz pairs on T2o,

Number ofSTEP ez
good Ritz values

20 10-2 1

30 10-3 1

40 10-3 4
50 10-3 5

60 10-4, 10-6 7, 4

70 10-5 , 10-7 10, 5
80 10-5 , 10-7 14, 10

90 10-5 , 10-7 18. 14
100 10- , 10-7 23, 18

110 10- , 10-7 28,24
120 10- , 10-7 35, 30

130 10- , 10-7 44, 37
140 10- , 10-7 52, 44
150 10- , 10-7 60, 54

160 10-5 , 10-7 70, 61
170 10-5 , 10-7 83, 75

180 10-5 , 10-7 99, 89
190 10-5 , 10-7 118, 109
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Table 2: Convergence of Ritz pairs on T501

Number ofSTEP
good Ritz values

20 10-2 1

30 10-3 1
40 10-3 2
50 10- 3
60 10-4, 10-6 5, 2

70 10-5 , 10-7 7, 3
80 10-5 , 10-7 9, 6
90 10-5 , i0-7 13. 10
100 10-5 , 10-7 16, 13
110 10- 5 , 10-7 20, 15
120 10-5 , 10-7 23, 20
130 10-5 , 10-7 29, 23
140 10-5 , 10"" 34, 29
150 10- , 10- 39, 34
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